LBS EVO ROUND HEAD SCREW FOR PLATES

LBS EVO version designed for steel-timber joints for outdoor use. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.

C4 EVO COATING

The atmospheric corrosion strength class (C4) of the C4 EVO coating was tested by the Research Institutes of Sweden - RISE. Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).

STATICS

These can be calculated according to Eurocode 5 under thick steel-timber plate connections, even with thin metal elements. Excellent shear strength values.

FTA-11/0030

FIELDS OF USE

- timber based panels
- solid timber and glulam
- CLT and LVL
- high density woods
- ACQ, CCA treated timber

CODES AND DIMENSIONS

d1	CODE	L	b	pcs
[mm]		[mm]	[mm]	
5 TX 20	LBSEVO540	40	36	500
	LBSEVO550	50	46	200
	LBSEVO560	60	56	200
	LBSEVO570	70	66	200

d1	CODE	L	b	pcs
[mm]		[mm]	[mm]	
7	LBSEVO780	80	75	100
TX 30	LBSEVO7100	100	95	100

GEOMETRY AND MECHANICAL CHARACTERISTICS

Nominal diameter	d1	[mm]	5	7
Head diameter	dĸ	[mm]	7,80	11,00
Thread diameter	d ₂	[mm]	3,00	4,40
Underhead diameter	d _{UK}	[mm]	4,90	7,00
Head thickness	t ₁	[mm]	2,40	3,50
Hole diameter on steel plate	d _{V,steel}	[mm]	5,0÷5,5	7,5÷8,0
Pre-drilling hole diameter ⁽¹⁾	d _{V,S}	[mm]	3,0	4,0
Pre-drilling hole diameter ⁽²⁾	d _{V,H}	[mm]	3,5	5,0
Characteristic tensile strength	f _{tens,k}	[kN]	7,9	15,4
Characteristic yield moment	M _{y,k}	[Nm]	5,4	14,2

⁽¹⁾ Pre-drilling valid for softwood.
⁽²⁾ Pre-drilling valid for hardwood and beech LVL.

			softwood (softwood)	LVL softwood (LVL softwood)	pre-drilled beech LVL (beech LVL predrilled)	LVL beech ⁽³⁾ (Beech LVL)
Characteristic withdrawal-resistance parameter	f _{ax,k}	[N/mm ²]	11,7	15,0	29,0	42,0
Characteristic head-pull-through parameter	f _{head,k}	[N/mm ²]	10,5	20,0	-	-
Associated density	ρ _a	[kg/m ³]	350	500	730	730
Calculation density	ρ_k	[kg/m ³]	<i>≤ 440</i>	410 ÷ 550	590 ÷ 750	590 ÷ 750

 $^{(3)}\mbox{Valid}$ for \mbox{d}_1 = 5 mm and \mbox{l}_{ef} \leq 34 mm

For applications with different materials please see ETA-11/0030.

T3 TIMBER CORROSIVITY

Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch, pine, ash and birch (see page 314).

STEEL-TO-TIMBER APPLICATION

The LBSEVO screw with diameter 7 is particularly suitable for custom-designed connections, which are characteristic of steel structures.

MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER

screws inserted WITHOUT pre-drilled hole

d1	[mm]		5	7
a ₁	[mm]	12·d·0,7	42	59
a ₂	[mm]	5·d·0,7	18	25
a _{3,t}	[mm]	15·d	75	105
a _{3,c}	[mm]	10·d	50	70
a _{4,t}	[mm]	5∙d	25	35
a _{4,c}	[mm]	5∙d	25	35

$ \xrightarrow{F} $	α=90°
---------------------	-------

 $\rho_k \leq 420 \text{ kg/m}^3$

d1	[mm]		5	7
a ₁	[mm]	5·d·0,7	18	25
a ₂	[mm]	5·d·0,7	18	25
a _{3,t}	[mm]	10·d	50	70
a _{3,c}	[mm]	10·d	50	70
a _{4,t}	[mm]	10·d	50	70
a _{4.c}	[mm]	5∙d	25	35

screws inserted WITHOUT pre-drilled hole

₽→	•	α=90°
•		

420 kg/m³ < $\rho_k \le 500$ kg/m³

d ₁	[mm]		5	7
a ₁	[mm]	15·d·0,7	53	74
a ₂	[mm]	7·d·0,7	25	34
a _{3,t}	[mm]	20·d	100	140
a _{3,c}	[mm]	15·d	75	105
a _{4,t}	[mm]	7∙d	35	49
a _{4,c}	[mm]	7∙d	35	49

screws inserted **WITH pre-drilled hole**

d1	[mm]		5	7
a ₁	[mm]	5·d·0,7	18	25
a ₂	[mm]	3·d·0,7	11	15
a _{3,t}	[mm]	12∙d	60	84
a _{3,c}	[mm]	7∙d	35	49
a _{4,t}	[mm]	3·d	15	21
a ₄	[mm]	3·d	15	21

d1	[mm]		5	7
a ₁	[mm]	4·d·0,7	14	20
a ₂	[mm]	4·d·0,7	14	20
a _{3,t}	[mm]	7∙d	35	49
a _{3,c}	[mm]	7∙d	35	49
a _{4,t}	[mm]	7∙d	35	49
a _{4,c}	[mm]	3∙d	15	21

 α = load-to-grain angle

 $d = d_1 = nominal screw diameter$

stressed end

-90° < α < 90°

stressed edge 0° < α < 180°

NOTES

- The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- In the case of timber-to-timber joints, the minimum spacing (a_1,a_2) can be multiplied by a coefficient of 1,5.
- In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014

 ϵ = screw-to-grain angle

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

The coefficients γ_M and k_{mod} should be taken according to the current regulations used for the calculation.

- For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
- Sizing and verification of the timber elements and metal plates must be done separately.
- The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
- · The screws must be positioned in accordance with the minimum distances.
- The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.
- The characteristic shear-strength value for LBS Ø5 nails has been evaluated assuming a plate thickness = S_{PLATE}, always considering the case of thick plate according to ETA-11/0030 (S_{PLATE} \geq 1,5 mm).
- The characteristic shear-strength value for LBS Ø7 screws has been evaluated assuming a plate thickness = S_{PLATE}, and considering the thin (S_{PLATE} \leq 3,5 mm) intermediate (3,5 mm < S_{PLATE} < 7,0 mm) or thick (S_{PLATE} \geq 7 mm) plate case.

NOTES

- The characteristic shear strengths were evaluated considering both an ϵ -angle of 90° ($R_{V,90,k}$) and of 0° ($R_{V,0,k}$) between the grains of the timber elements and the connector.
- The characteristic thread withdrawal resistances were evaluated considering both an ϵ angle of 90° $(R_{ax,90,k})$ and of 0° $(R_{ax,0,k})$ between the grains and the connector.
- For the calculation process a timber characteristic density ρ_{k} = 385 kg/m^3 has been considered.
- For different ρ_k values, the strength values in the table can be converted by the k_{dens} coefficient.

$$R'_{V,k} = k_{dens,v} \cdot R_{V,k}$$
$$R'_{av,k} = k_{dens,av} \cdot R_{av,k}$$

ρ_k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

• For a row of n screws arranged parallel to the direction of the grain at a distance a₁, the characteristic effective shear bearing capacity R_{ef,V,k} can be calculated by means of the effective number n_{ef} (see page 230).